

Part |
Anton Gerdelan

<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Review

e |labs - pointers and pointers to pointers
« memory allocation
* easier it you remember

* char* and char** are just basic ptr variables that hold an address

* int and char* and char** are just conveniences over assembly code
* e.g. 'what offset size should i use for ... [i], +,/, ...’
* e.g.[i]on a1 byte type says 'get address of start and add i * 1

* the I*1 bit is called the 'stride’ - how long Is each 'step’ in memory

| have a big array of People of size n.
| need to find one holding a name variable “anton”.

Linear search - big-O7
Pre-sorted binary search - big-O?

't would be great It | could just do:

Person me = people array[“anton”]

and get O(1) indexing.
But this doesn't work.

How can | make this work"

't You Can Prepare the Data
N Advance

* Assign each person that is created an unique index to the array.
* -> Or create a separate look-up table |[namelarray index|
e -> Usually you can do this. Done.

e |f we can't prepare the data for each key (names for us) - we
need to search the data structure.

e e.9. 'Is there a user called ‘anton' in the database?”

e -> Difficult. Evaluate hash table as an alternative to
searching. Use name as the key.

Can we make a function that just
turns a string into an integer?

How"?

Create a Hash Function

* return sum of character codes in string”?
int index 'a' + 'n' + 't' + 'o' + 'n';
97 + 110 + 116 + 110 = 433;

* suggest some improvements to me:

* what if the sum is bigger than our array size?

* what if we have e.g. names: adi and ida’”

Dealing with Limitations

* Make the array bigger to avoid collisions

* More wasted space -> space complexity ++
 Can't be perfect - allow some collisions

* More collisions -> time complexity ++
* Improve hash function to reduce collisions

 Hard. May over-fit to test input instances.

Allow Collisions

* Must allow some collisions or have infinite storage
e Several strategies exist

* "Use the next index down"

* Put a linked list behind every index

* Cost of each”? {Coding, Time, Space}

Use the Next Index Down
‘Linear Probing’

Person

keys hash function

3. ascii = val of char
4. ndex += asci

1 4l 5. return index
adi’ - > — 302—>

" " 1.Index =0
ida > |2. for each char in name |~ 302 \

lda’, data

‘adl’, data

Q. downsides?

Use the Next Index Down

* Relies on keys being mostly evenly distributed with
some space in-between

e |t keys are clustered
e Becomes a plain linear array search again
e tweak hash function
* enlarge array S(bigger)

« Easy to implement (can not be understated)

Chaining Hash Tables

idx Person

keys hash function

da’ — — 302 \\\
‘adl’ —

— 302 —

ida" —T— "adi"/‘

Q. Big-O best/average/worst?

Chaining Hash Tables

Avoid having to distribute gaps in hash table
Put a linked list behind each array index
Inherits pros and cons of linked lists

e \Which are?

* (what are our criteria for evaluating data structs”)

Part |l (lecture 8)

~ Rehash ~

Improve the Hash Function

* Generate more unigue values

int index = name[0] + name[l]*M"1 4+ name[2]*M*2 + ..
| 3

warning: long strings will get too big for number and ?77?
(split them up so exponents don't get too high)

* Fit into a smaller array/table

M = 2560
my hash table[M];
i1ndex = 1ndex % M;

e Can we do better? Why might 256 be a problem?

Powers of 2 are a problem?

* hash function h(k) = k % m
h(k) is function returning index
K IS key input
m IS max size of table

* If mis a power of 2, written m=2p

* pbooks say: then h(k) is just the p
lowest-order bits of k

e ~~ 1Int index = lowest M bits of
1ndex;

Improve the Hash Function

A common strategy uses prime numbers - the product
of a prime with another number has a very good chance
of being [more] unique.

 Choose table size such that it is a prime near the size
yOou expect.

* Choose constant k such that it is the same prime.
e.g. change table[256] to table[251]

int index = first letter * 251 + second letter * 251 A2 ...
INndex = index % 251;

Different Collision Methods

e Separate chaining - our linked lists add-on
e Can also use an array at each table index as "buckets’ (not as flexible)
* Open addressing hashing methods:
* "Linear probing’ - our 'use the next value along
e |oad factor = item_count / array_size
 when load factor > ~2/3 then perf suffers
e uses <b probes on avg. for a table <2/3 full
* Rehashing and double hashing
- quadratic probing

e ... there are lots of them! implementations differ between books/programmers etc.

Double Hashing

h(k,i)) = (f(k) + 1™ g(k)) % M
where | and k are auxiliary hash functions
first probe goes to array|f(k)]

additional probes are offset not by 1, but by
the second function

stepping by >1 means you might miss values. so...

Double Hashing

e {0 cover entire array g(k) must be relatively prime to M
« Mis power of 2 and g(k) always returns odd number
e or Mis prime and g(k) always returns positive number less than M
e can work with other setups but difficult to predict coverage
 example where M is prime:
e f(k) =k % M
agk) =1+ (k% M)
where M' is a slightly smaller M, e.g. M -1

e will examine e.qg. every 257th slot until all slots examined.

Minimum Knowledge

Read at least one book's summary (some are online)
of different hash table methods

Implement your open simple open addressing
function (linear probing)

Know how to draw/explain a probing method
Know when a hash table is and isn't an advantage

Consider improvements to code with double hashing
or chaining. Read some blogs/code from others.

Comparison

e Time complexity can depend on table load
 for large arrays and input strings at 90% load:
 linear probe takes avg. 50 probes for unsuccessful search
e generates O(m) range of values for keys
e double hashing takes 10

e generates O(mA2) values for keys (2 functions)

don't let a hash table get 90% full!

keep load small or don't use hash tables (space hungry)

Comparison

* open addressing is hard to compare to chaining

* chaining may be better when memory req. not
known In advance

* otherwise double hashing wins (by a small
margin)

 Cormen et. al. "Algorithms" have the best (most
methods + lengthy + proofs) coverage of hash
tables

Are they right??

Try it!

| tried w/ short input strings

* what's the biggest number in a 32-bit unsigned
int"?

* what values does pow(120, i) give with a string of
length 327

* split long strings or replace pow() with something
else

| hashed against: { 8, 16, 32, 64 }

and then primes: { 7, 17, 31, 61 }

‘Rate My Hash Function’
« Ratio of space used - "load factor’. maximum is ~90%

e Frequency of double-ups

o Spread over table - clustered (~worse) or even (~better)?

« Rate by Average time complexity. Is our O(1 + a) Closer to O(1) or
O(n)?

 Function must suit actual input instances, not just on paper

e |f your data size nis small, you may have fallen for a trick guestion.

e Programmers often refine their own, personal 'awesome simple
hash function' in their personal toolkit/header.

Hash Function Strategies

* Division (remainder) index = key % n
« Compression sum or Xor of large(er) input data

e Extraction
use only (more unique) part of the key as index

 Middle of square key = key/2.
key = extract middle part of key (more unigque)

 Know what key data looks like to guide you making
more efficient function

Hasning louches other
Disciplines

e Hash functions aren't just for tables
e e.g. SHA algorithm (Secure Hash Algorithm 1)
e output a checksum of particular length
e run 'checksum myfile' on your computer - compare output
e Cryptography
e File integrity
 download not corrupted

 this is the original file, nothing injected

Hash Function
Algorithm Design

e Input data instance (our key)
e short string, uint, address, whole file
« Qutput data permutation
e table index between 0 and n - 1
« ideally each output index is equally likely (even distribution)
e or e.g. 20-byte checksum (usually display as hex)
e Algorithm is .: arithmetic and similar to a random number generator

e -> this is looking for a math. function with even distribution

o transform keys into numbers first - so we can do arithmetic on them

