
Hash
Tables

Part I 
Anton Gerdelan 

<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Review
• labs - pointers and pointers to pointers

• memory allocation

• easier if you remember

• char* and char** are just basic ptr variables that hold an address

• int and char* and char** are just conveniences over assembly code

• e.g. 'what offset size should i use for … [i], +, /, …'

• e.g. [i] on a 1 byte type says 'get address of start and add i * 1'

• the i*1 bit is called the 'stride' - how long is each 'step' in memory

I have a big array of People of size n.

I need to find one holding a name variable “anton”.

Linear search - big-O?
Pre-sorted binary search - big-O?

It would be great If I could just do: 
 

Person me = people_array[“anton”]

and get O(1) indexing. 
But this doesn’t work.

 
How can I make this work?

If You Can Prepare the Data
in Advance

• Assign each person that is created an unique index to the array.

• -> Or create a separate look-up table |name|array index|

• -> Usually you can do this. Done.

• If we can't prepare the data for each key (names for us) - we
need to search the data structure.

• e.g. "Is there a user called 'anton' in the database?"

• -> Difficult. Evaluate hash table as an alternative to
searching. Use name as the key.

Can we make a function that just
turns a string into an integer?

How?

Create a Hash Function

• return sum of character codes in string?  
int index = 'a' + 'n' + 't' + 'o' + 'n';  
 = 97 + 110 + 116 + 110 = 433;

• suggest some improvements to me:

• what if the sum is bigger than our array size?

• what if we have e.g. names: adi and ida?

Dealing with Limitations
• Make the array bigger to avoid collisions

• More wasted space -> space complexity ++

• Can't be perfect - allow some collisions

• More collisions -> time complexity ++

• Improve hash function to reduce collisions

• Hard. May over-fit to test input instances.

Allow Collisions
• Must allow some collisions or have infinite storage

• Several strategies exist

• "Use the next index down"

• Put a linked list behind every index

• Cost of each? {Coding, Time, Space}

Use the Next Index Down
"Linear Probing"

idx Person

300 …

301 …

302 "ida", data

303 "adi", data

1. index = 0
2. for each char in name  
3. ascii = val of char  
4. index += ascii  
5. return index

hash functionkeys

"ida"

"adi"

302

302

Q. downsides?

Use the Next Index Down
• Relies on keys being mostly evenly distributed with

some space in-between

• If keys are clustered

• Becomes a plain linear array search again

• tweak hash function

• enlarge array S(bigger)

• Easy to implement (can not be understated)

Chaining Hash Tables
idx Person

300 …

301 …

302 head

303 …

hash functionkeys

"ida"

"adi"

302

302 "ida" "adi"

Q. Big-O best/average/worst?

Chaining Hash Tables
• Avoid having to distribute gaps in hash table

• Put a linked list behind each array index

• Inherits pros and cons of linked lists

• Which are?

• (what are our criteria for evaluating data structs?)

Part II (lecture 8)

~ Rehash ~

Improve the Hash Function
• Generate more unique values 
 
int index = name[0] + name[1]*M^1 + name[2]*M^2 + …

• warning: long strings will get too big for number and ???  
(split them up so exponents don't get too high)

• Fit into a smaller array/table 
 
M = 256  
my_hash_table[M];  
index = index % M;

• Can we do better? Why might 256 be a problem?

Powers of 2 are a problem?
• hash function h(k) = k % m 

h(k) is function returning index  
k is key input  
m is max size of table

• if m is a power of 2, written m=2^p

• books say: then h(k) is just the p
lowest-order bits of k

• ~~ int index = lowest M bits of
index;

Improve the Hash Function
• A common strategy uses prime numbers - the product

of a prime with another number has a very good chance
of being [more] unique.

• Choose table size such that it is a prime near the size
you expect.

• Choose constant k such that it is the same prime.  
e.g. change table[256] to table[251] 
 
int index = first letter * 251 + second letter * 251 ^2 … 
index = index % 251;

Different Collision Methods
• Separate chaining - our linked lists add-on

• Can also use an array at each table index as "buckets" (not as flexible)

• Open addressing hashing methods:

• "Linear probing" - our 'use the next value along'

• load factor = item_count / array_size

• when load factor > ~2/3 then perf suffers

• uses <5 probes on avg. for a table <2/3 full

• Rehashing and double hashing

• quadratic probing

• … there are lots of them! implementations differ between books/programmers etc.

Double Hashing
• h(k,i) = (f(k) + i * g(k)) % M

• where j and k are auxiliary hash functions

• first probe goes to array[f(k)]

• additional probes are offset not by 1, but by  
the second function

• stepping by >1 means you might miss values. so…

Double Hashing
• to cover entire array g(k) must be relatively prime to M

• M is power of 2 and g(k) always returns odd number

• or M is prime and g(k) always returns positive number less than M

• can work with other setups but difficult to predict coverage

• example where M is prime:

• f(k) = k % M 
g(k) = 1 + (k % M') 
where M' is a slightly smaller M, e.g. M -1

• will examine e.g. every 257th slot until all slots examined.

Minimum Knowledge
• Read at least one book's summary (some are online)

of different hash table methods

• Implement your open simple open addressing
function (linear probing)

• Know how to draw/explain a probing method

• Know when a hash table is and isn't an advantage

• Consider improvements to code with double hashing
or chaining. Read some blogs/code from others.

Comparison
• Time complexity can depend on table load

• for large arrays and input strings at 90% load:

• linear probe takes avg. 50 probes for unsuccessful search

• generates O(m) range of values for keys

• double hashing takes 10

• generates O(m^2) values for keys (2 functions)

• don't let a hash table get 90% full!

• keep load small or don't use hash tables (space hungry)

Comparison
• open addressing is hard to compare to chaining

• chaining may be better when memory req. not
known in advance

• otherwise double hashing wins (by a small
margin)

• Cormen et. al. "Algorithms" have the best (most
methods + lengthy + proofs) coverage of hash
tables

Are they right?
• Try it!
• I tried w/ short input strings

• what's the biggest number in a 32-bit unsigned
int?

• what values does pow(120, i) give with a string of
length 32?

• split long strings or replace pow() with something
else

• I hashed against: { 8, 16, 32, 64 }
• and then primes: { 7, 17, 31, 61 }

"Rate My Hash Function"
• Ratio of space used - "load factor". maximum is ~90%

• Frequency of double-ups

• Spread over table - clustered (~worse) or even (~better)?

• Rate by Average time complexity. Is our O(1 + a) Closer to O(1) or
O(n)?

• Function must suit actual input instances, not just on paper

• If your data size n is small, you may have fallen for a trick question.

• Programmers often refine their own, personal 'awesome simple
hash function' in their personal toolkit/header.

Hash Function Strategies
• Division (remainder) index = key % n

• Compression sum or xor of large(er) input data

• Extraction 
 use only (more unique) part of the key as index

• Middle of square key = key^2. 
 key = extract middle part of key (more unique)

• Know what key data looks like to guide you making
more efficient function

Hashing Touches other
Disciplines

• Hash functions aren't just for tables

• e.g. SHA algorithm (Secure Hash Algorithm 1)

• output a checksum of particular length

• run 'checksum myfile' on your computer - compare output

• Cryptography

• File integrity

• download not corrupted

• this is the original file, nothing injected

Hash Function  
Algorithm Design

• Input data instance (our key)

• short string, uint, address, whole file

• Output data permutation

• table index between 0 and n - 1

• ideally each output index is equally likely (even distribution)

• or e.g. 20-byte checksum (usually display as hex)

• Algorithm is .: arithmetic and similar to a random number generator

• -> this is looking for a math. function with even distribution

• transform keys into numbers first - so we can do arithmetic on them

